
www.manaraa.com

Efficient XML Data Management: An Analysis

Ullas Nambiar1, Zoé Lacroix1, Stéphane Bressan2, Mong Li Lee2, and
Ying Guang Li2

1 Arizona State University
{mallu,zoe.lacroix}@asu.edu

2 National University of Singapore
{steph,leeml,liyg}@comp.nus.edu.sg

Abstract. With XML rapidly gaining popularity as the standard for
data exchange on the World Wide Web, a variety of XML management
systems (XMLMS) are becoming available. The choice of an XMLMS is
made difficult by the significant difference in the expressive power of the
queries and the performance shown by these XMLMS. Most XMLMS are
legacy systems (mostly relational) extended to load, query, and publish
data in XML format. A few are native XMLMS and capture all the char-
acteristics of XML data representation. This paper looks at expressive
power and efficiency of various XMLMS. The performance analysis relies
on the testbed provided by XOO7, a benchmark derived from OO7 to
capture both data and document characteristics of XML. We present ef-
ficiency results for two native XMLMS, an XML-enabled semi-structured
data management system and an XML-enabled RDBMS, which em-
phasize the need for a delicate balance between the data-centric and
document-centric aspects of XML query processing.

1 Introduction

The eXtended Markup Language (XML) is designed as the standard for infor-
mation interchange on the Web. XML is a subset of SGML (Standardized Gen-
eral Markup Language) designed to provide structure to textual documents and
augments HTML (Hyper Text Markup Language) by allowing data to carry
its meaning and not just presentation details. XML’s development was not fur-
thered directly by the mainstream database community, yet database researchers
actively participated in developing technology for XML, particularly query lan-
guages. This led to the development of query languages such as XML-QL [18],
LOREL [3] and XQL [27]. These languages designed by the database community
are biased toward the data-centric view of XML that requires data to be fully
structured. But XML was developed primarily as a document markup language
that would be more powerful than HTML yet less complex than SGML and does
not require the content to adhere to structural rules. The document characteris-
tics of XML representation not only relies on the data representation expressed
through markups but also on the ordering of the document components within
the file. This leads us to question whether the query languages designed by

K. Bauknecht, A M. Tjoa, G. Quirchmayr (Eds.): EC-Web 2002, LNCS 2455, pp. 87–98, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



www.manaraa.com

88 U. Nambiar et al.

the database community and the data management systems that use these lan-
guages to manipulate XML data, capture the whole essence and power of XML.
In essence, these languages and systems have a data-centric view of XML, and
merely use XML to publish the data. On the other hand many systems use
implementations of XPath [14], a language designed to identify parts of XML
documents, to query XML data. Such systems then subscribe to the document-
centric view of the XML. Thus the initial use of XML has been largely polarized
with a large number of users (coming from the database community) developing
systems for the data-centric characteristics of XML, while many others in areas
like Bio-informatics research, Medical Systems and Geographical Information
Systems (GIS) use XML for its ability to manipulate documents. Recently the
World Wide Web Consortium (W3C) published XQuery [12] as a candidate for
a standard query language for XML, combining both the data and document
centric characteristics of XML.
In this paper, we study XML management systems (XMLMS) by addressing

the issues of data representation and storage, and XML query functionalities
and processing efficiency. We first analyse the design of XMLMS and identify
XML characteristics and XML query capabilities and their corresponding con-
sequences on the performance. In the second part of the paper, we run experi-
ments to coroborate our analysis. We use XOO7 [26,9], a benchmark for XML
databases, to compare the current XML data management systems. The sys-
tems we compare are : LORE [3], Kweelt [28], XENA [31] and an XPath [14]
implementation1.
Section 2 explores XML in terms of its known representations and describes

four XMLMS that use these representations. . We also investigate how XML data
affects processing efficiency of database systems. We briefly introduce XOO7,
the benchmark we use in Section 3. In Section 4 we analyze the results from
the performance study of the four XML data management systems we chose
against the benchmark queries, and conclude in Section 5 by highlighting our
contributions and the possible extensions of this work.

2 Representational Diversity and Processing Efficiency of
XML

XML was designed to overcome the shortcomings of its two predecessors, SGML
and HTML. SGML is complex, in particular for simple applications such as
publishing on the web. The principle drawback of SGML is its strict adherence
to marked-up structure of the documents. On the other hand, HTML designed
at CERN as a watered down version of SGML, provides a common set of tags for
display. So parsers can be incorporated into Web Browsers which made HTML
the first language of the World Wide Web. But this flexibility in usage of its
syntax that made HTML popular also makes it a bad candidate for exchanging
1 The developers of the commercial product dismissed our request to use actual name

of the product.



www.manaraa.com

Efficient XML Data Management: An Analysis 89

data over the Web. HTML allows multiple interpretations of the same data
and makes it impossible to add semantics to the data published in HTML. In
contrast, XML is a very versatile yet easy to use markup language, that has the
extensibility of SGML but remains as simple as HTML.

2.1 Data-Centric versus Document-Centric View of XML

The initial attempts at developing tools for storage of XML content were bi-
ased by the legacy of the researchers who worked on providing the solutions.
Solutions developed by the database community focused at using XML as yet
another data format and the use of relational and sometimes object-relational
data processing tools. While this use of XML is acceptable, it raises the ques-
tion of harnessing the full power of XML. XML is inherently semi-structured.
Although, like SGML, XML documents can use a DTD to derive their structure,
DTDs are not a must for all XML documents. Thus XML documents can take
any structure. On the other hand, relational and object-relational data models
have a fixed pre-defined structure. We can represent totally structured data us-
ing XML in combination with DTDs or XML Schema specifications [20,30,5],
which we term as data-centric characteristic or format of XML. The documents
subscribing to the data-centric view of XML will be highly structured. Similar to
traditional (relational) databases, the order of sibling elements is unimportant
in such documents. On the other hand, document-centric XML content is highly
unstructured, and both the implicit and explicit order of elements is important
in such documents. The implicit order is carried by the order of the elements
(as siblings in a tree-like representation) within the file, whereas an explict or-
der would be expressed by an attribute or a tag in the document. Although it
is easy to express the explicit order in relational databases, capturing the im-
plicit order while converting a document-centric XML document into relational
database proves to be a problem. Besides the implicit order, XML documents
differ from a relational representation by allowing deep nesting and hyper-linked
components. Implicit order, nesting and hyperlinks can always be represented in
tables but with costly transformations in terms of time and space.

2.2 XML Processing Efficiency

Query languages designed to operate using the data-centric view cannot ex-
ploit the implicit order present in XML. But relational systems can efficiently
process most data-centric queries. XML management systems that focus on a
data-centric representation are less expressive but should be able to give good
performance. On the other hand, systems using query languages that exploit
document characteristics of XML have greater expressive power but are likely
to be less efficient.
An adequate XML query language should definitely provide support for issu-

ing all XML queries including: (1) Relational queries, (2) Document queries, and
(3) Navigational queries. We classify XML queries that have expressive power
similar to Datalog [15] and [19] for relational model as Relational queries. Queries



www.manaraa.com

90 U. Nambiar et al.

that use the implicit and explicit order of elements in an XML document, as well
as textual functionalities are classified as Document queries while the queries
that require traversal of XML document structure using references/links as sup-
ported by XLink/XPointer specification [17] and [16] are Navigational queries.
A detailed classification of essential XML query characteristics is given by [26].
The ability to express and process document and navigational queries in ad-

dition to the traditional relational queries affect significantly the performance. A
totally unordered XML data will require least processing time. The simple expla-
nation is the similarity of such data with relational data and hence the ability to
use optimized approaches from relational database community to process such
data. In contrast, fully ordered data, requires the preservation of the structure
of XML document for processing any query. Existing approaches at processing
queries over fully ordered data require loading the entire document into main
memory and creating a tree structure of the document. Similar analysis can be
made for nested or hyperlinked documents versus flat data.

2.3 XML Management Systems

From the above discussion we divide current XML management systems into
XML-Enabled and Native XML databases. XML-Enabled databases (usually re-
lational) contain extensions (either model- or template-driven) for transferring
data between XML documents and themselves and are generally designed to
store and retrieve data-centric documents. For a detailed classification of XML
management products refer to [8]. An example of a native XMLMS is Kweelt
[28], a proposed implementation of Quilt [13]. Kweelt stores data in flat files
and hence favours the document-centric nature of XML. LORE [3] is not ex-
actly native but it is a semi-structured data management system later revised to
handle XML documents [23]. The main difficulty of the conversion was indeed
tackling the implicit order. Most of the existing XML data management systems
are XML-enabled and built on top of relational or object-relational systems.
They are used to publish data in XML and allow XML queries to be translated
into SQL statements. We use XENA [31], designed at the National University
of Singapore as an XML-enabled data management system. It stores the XML
data into tables automatically according to the XML schema. XENA then re-
trieves data from tables by converting an XPath query into several SQL queries
automatically, using the XML schema.
Our decision of choosing the above mentioned XML data management sys-

tems was primarily motivated by the easy availability of their source code and
the detailed documentation about their implementations.

3 XML Database Benchmarks

Semistructured data models and query languages have been studied widely in [1]
and [10]. In [22] several storage strategies and mapping schemes for XML data
using a relational database are explored. Domain-specific database benchmarks



www.manaraa.com

Efficient XML Data Management: An Analysis 91

for OLTP (TPC-C), decision support (TPC-H, TPC-R, APB-1), information re-
trieval, spatial data management (Sequoia) etc. are available [25]. XOO7 [26] and
[9], XMach-1 [6] and XMark [29] are the three benchmarks currently available
that test XMLMS for their query processing abilities.

Table 1. Comparing Benchmarks over XML system characteristics

System Characteristics XMach-1 XMark XOO7
Selection Queries

√ √ √
Projection Queries

√ √ √
Reduction: Remove a selected element

√ √ √
Restructuring: Reorder sub elements

√ √ √
Construction: Output new structure

√ √ √
Remote Execution: Data and Evaluator on different machines
Preserve Implicit Order

√
Exploit Schema

√ √ √
Schemaless Document Manipulations

√
XLink and XPointer Manipulations
Streaming Data Processing: Schema generation on the fly
Transaction Processing
Text Search

√ √ √
View Processing
Stored Procedures and Triggers
User Defined Functions

√ √
Aggregate Manipulations

√
Update Element/Database
Delete Element/Database

√
Append Data

√
Extract results based on Similarity Criterion
Navigational Queries

√

XOO7 design attempts to harness the similarities in data models of XML and
object-oriented approaches. Although XML attempts to provide a framework for
handling semistructured data, it encompasses most of the modeling features of
complex object models [2] and [4]. There are straightforward correspondences
between the object-oriented schemas and instances and XML DTDs and data.
XOO7 is an adaptation of the OO7 Benchmark [11] for object-oriented database
systems. XOO7 provides 18 query challenges. The current implementation of
XOO7 tests XML management systems which store their data locally. For a
detailed description of XOO7 refer to [26].
XMach-1 tests multi-user features provided by the systems. The benchmark

is modeled for a web application using XML data. It evaluates standard and
non-standard linguistic features such as insertion, deletion, querying URL and
aggregate operations. Although the proposed workload and queries are interest-
ing, the benchmark has not been applied and no results have been published
yet. XMark developed under the XML benchmark project at CWI, is a bench-
mark proposed for XML data stores. The benchmark consists of an application
scenario which models an Internet auction site and 20 XQuery challenges de-
signed to cover the essentials of XML query processing. These queries have been
evaluated on an internal research prototype, Monet XML, to give a first baseline.



www.manaraa.com

92 U. Nambiar et al.

Table 1 compares the expressive power of queries from XOO7, XMark and
XMach-1. As can be seen XOO7 is the most comprehensive benchmark in terms
of XML functionalities covered. Both XMark and XMach-1 focus on a data-
centric usage of XML. All three benchmarks provide queries to test relational
model characteristics like selection, projection and reduction. Properties like
transaction processing, view manipulation, aggregation and update, are not yet
tested by any of the benchmarks. XMach-1 covers delete and insert operations,
although the semantics of such operations are yet to be clearly defined under
XML query model. In [26] detailed information about the data and schema used
by these benchmarks is provided.
We choose to use XOO7 to analyze the performance of chosen XML data

management systems. Our decision is motivated by the fact that XOO7 is a com-
prehensive benchmark as can be seen from Table 1 and also empirical evaluations
show the ability of the XOO7 queries to distinguish all the desired functional-
ities supported by an XML database [9]. In the absence of queries exploiting
the document-centric features, XMark and XMach-1 may not be able to clearly
distinguish XML-enabled systems from Native XML management systems.

4 Empirical Study and Analysis of XML Databases

In this section we present results of experiments conducted to study the ex-
pressive power and processing efficiency of the four data management systems:
LORE, Kweelt, XENA and a commercial implementation of XPath, which we
call DOM-XPath. We compare the systems in terms of their response times for
relational, document and navigational queries taken from the XOO7 benchmark
[26]. The experiments are run on a 333 Mhz system running SunOS 5.7 with 256
MB RAM.

Fig. 1. Space Utilization and Data Conversion Time

4.1 Data Conversion: Time and Space Requirements

We recorded the time and space utilized by the XMLMS for converting the
datasets provided as part of XOO7 to their proprietary format. The space uti-
lization is measured in terms of secondary storage space used by each system



www.manaraa.com

Efficient XML Data Management: An Analysis 93

for the various databases in the benchmark. Figure 1 compares the space and
time requirements of the various XML data management systems we test. We
use datasets of three sizes: small, medium and large for our tests. Small dataset
is of size 4.2MB, medium of size 8.4MB and large has size 12.8 MB. The datasets
are designed using the schema provided in XOO7 [9].
Kweelt queries the ASCII file directly and does not need to convert the XML

data into another format. So the storage space it needs is the same as the size of
the XML data. XENA stores XML data in MySQL tables. Although the conver-
sion from XML format to relational tables ends up removing the redundant tags
around the XML data, XENA ends up generating a number of relational tables
to represent the XML data. In fact XENA creates two groups of tables. One
group is based on the XML schema with one table per entity; the other group
is for the management of these tables. Hence XENA requires almost double the
space used by actual XML data after conversion. LORE creates Dataguides [24]
for the datasets to help in efficient query processing. Dataguides are a concise
and accurate summary of all paths in the database that start from the root.
Hence LORE requires almost three times the space of the actual XML data, as
can be seen from Figure 1. The commercial implementation of XPath, DOM-
XPath, also creates three binary files for an XML dataset. One of the files is
a proprietary database that preserves the native XML structure by storing the
entire document tree of the dataset thereby occupying much larger space than
the XML dataset.
Not surprisingly, Kweelt, is most efficient compared to other systems in terms

of space usage. Since Kweelt processes directly raw XML data, it requires no
time for data conversion. As expected, XENA, an XML-enabled database system
requires the most amount of time to convert from the XML model to a relational
model. LORE requires time for generating Dataguides and we assume the XPath
implementation is also generating indexes, task that requires time.

4.2 Response Time Analysis

We divide the XOO7 queries into three groups: Relational queries, Navigational
queries and Document queries. Table 2 depicts the proposed classifcation of
XOO7 queries. In the following, we will illustrate the performance of the various
systems for the representative queries in each group.

Fig. 2. Response time for Q1 and Q2 (relational queries)



www.manaraa.com

94 U. Nambiar et al.

Table 2. XOO7 benchmark queries

ID Description

Relational Queries
Q1 Randomly generate 5 numbers in the range of AtomicPart’s MYID. Return AtomicPart according

to the 5 numbers.
Q2 Randomly generate 5 titles for Documents then return the first paragraph of Document with the titles.
Q3 Select 5% of AtomicParts via buildDate (in a certain period).
Q5 Join AtomicParts and Documents on AtomicParts docId and Documents MyID.
Q7 Randomly generate two phrases among all phrases in Documents. Return the documents with both the phrases.
Q8 Repeat query 1 but replace duplicate elements using their IDREF.
Q13 For each BaseAssembly count the number of documents.
Q14 Sort CompositePart in descending order where buildDate is within a year from current date.
Q16 Return all BaseAssembly of type “type008” without any child nodes.

Navigational Queries
Q4 Find the Compositepart if it is later than BaseAssembly it is using.
Q6 Select all BaseAssemblies from an XML database having same “type” attribute as the BaseAssemblies in

another database but with later buildDate.
Q9 Select all AtomicParts with corresponding CompositeParts as their sub-elements.
Q10 Select all ComplexAssemblies with type “type008”.
Q15 Find BaseAssembly of not type “type008”.
Q17 Return all Connection elements with length greater than Avg(length) within the same composite part

without child nodes.
Q18 For CompositePart of type “type08”, give ’Result’ containing ID of CompositePart and Document.
Q19 Select all of the CompositePart, Document and AtomicPart.

Document Queries
Q11 Among the first 5 Connections of each CompositePart, select those with length greater than “len”.
Q12 For each CompositePart, select the first 5 Connections with length greater than “len”.
Q20 Select the last connection of each CompositePart.
Q21 Select the AtomicPart of the third connection in each CompositePart.
Q22 Select the AtomicPart whose MyID is smaller than its sibling’s and it occurs before that sibling.
Q23 Select all Documents after the Document with MyID = 25.

Figure 2 compares the performance of the four XMLMS for two relational
queries in the XOO7 benchmark. Query Q1 tests simple selection processing
efficiency while query Q2 uses selection having string comparison. XENA gives
the best performance in both queries because it leverages the power of its backend
relational database. LORE gives interesting results: it is efficient for query Q2 as
we expected whereas has poor response for Q1, and has most response time for
Q1. The default data type in LORE is string, hence string comparison is very
fast, but comparisons on other types require frequent type casting and drop its
performance. Both Kweelt and DOM-XPath are implemented based on DOM,
but Kweelt always gives a better performance than DOM-XPath (This is also
the case for the navigational and document queries). There are two possible
reasons. First, they may be using different parsers. Second, DOM-XPath, being
a commercial product, is required to handle additional issues like admission
control, which may introduce some additional workload. Kweelt, being a research
prototype, concentrates on optimized query processing only.
Overall for the relational queries, the two native XMLMS, Kweelt and DOM-

XPath, give relatively poorer performance than the two XML-enabled systems.
LORE does not perform well when data type coercion is required. XENA lever-
ages the query processing power of the relational database engine and yields the
best performance. Kweelt and DOM-XPath always need to follow a particular
path to check whether an element or an attribute satisfies certain conditions,
thus more processing is needed.
In Figure 3 we compare the performance of the XMLMS for two representa-

tive navigational queries, Q4 and Q15. Query Q4 tests the parent-child relations
in XML data, while query Q15 measures the ability to preserve the structure of
original XML data i.e. preserving the paths and the sibling orders as those in the



www.manaraa.com

Efficient XML Data Management: An Analysis 95

Fig. 3. Response time for Q4 and Q15 (navigational queries)

original XML document. LORE shows the worst performance. XENA is much
faster than LORE in query Q4 but slower for Q15. To keep the parent-child
relations, XENA saves the parent index for each element. The indices on the
path fields are built automatically. The response time of XENA increases almost
10 times from query Q4 to query Q15. Unfortunately, we could not ascertain
how LORE maintains the response time to be almost a constant for the both
the queries. Kweelt and DOM-XPath store the XML data in the original form,
therefore they perform relatively better.
In general, the two XML-enabled systems show poor performance for navi-

gational queries. The primary reason is they change the structure of the XML
data to proprietary formats, so they need additional time to reconstruct the
original XML data. The two native XML management systems store the XML
data in the original form, hence they simply return the elements satisfying the
conditions following the original structure.

Fig. 4. Response time for Q11 and Q21 (document queries)

Figure 4 gives a performance comparison for two document queries in the
XOO7 benchmark. Query Q11 tests whether elements in a certain range satisfy
given conditions while query Q21 selects elements with a particular order. The
implicit order is required to answer both the queries. XENA gives the worst per-
formance for both queries. The results given by XENA strengthen our belief that
it is difficult to preserve the implicit order of elements in a relational database.
LORE performs the best in the two document queries because it makes use of
DataGuide to record the orders of elements. Kweelt and DOM-XPath perform
relatively better than XENA. They simply check the element orders based on



www.manaraa.com

96 U. Nambiar et al.

the knowledge from the DOM tree. We did not care about the attribute order
as it is not required by the W3C working group.
From the experiments with the XOO7 benchmark, we can see that the ba-

sic XML-enabled management systems are inadequate to perform navigational
queries and document queries, but they can be improved by introducing some
techniques, like DataGuide, to record the original structure of the XML data.
The native XML implementations prove to be more efficient for navigational
queries and document queries. New techniques for representing and extracting
relational data in native XMLMS such as storing meta information about tuple
structure, creating relational style indexes or incorporating a small relational
optimizer would help improve the performance for relational queries.

5 Conclusion and Future Work

To evaluate the underlying XML technologies (e.g. XPath, XPointer, XQuery,
etc.) and efficiency of an XMLMS using them, a benchmark becomes inevitable.
In this paper, we identify current XML representations and analyze their effect
on the performance of the systems. Then we corroborate our study by run-
ning experiments with XOO7. Our results confirm that XML-enabled relational
database systems which use the data-centric view of XML process more effi-
ciently the queries that only manipulate data and do not use the implicit order
or the hyperlinks in documents. On the other hand, native XMLMS designed to
handle raw XML data and documents are efficient in processing document or
navigational queries whereas they show poor performance for relational queries.
Currently no system seems to offer a needed balance between the data-centric
and document-centric approaches. The choice of an XMLMS then depends on
the type of data that needs to be stored and the type of queries that will be ex-
pressed. A user with data centric needs will favor an XML-enabled DMS whereas
one wishing to store and manipulate documents will chose a native XMLMS.

Acknowledgements. We thank the XENA project team for providing us with
the source code and valuable comments in setting up XENA.

References

1. S. Abiteboul. Querying semi-structured data. In Proc. of Intl. Conf. on Database
Theory, pages 1–18, Delphi, Greece, January 1997. LNCS 1186, Springer Verlag.

2. S. Abiteboul and S. Grumbach. COL: A Logic-Based Language for Complex Ob-
jects. EDBT, pages 271–293, 1988.

3. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L. Wiener. The Lorel Query
Language for Semistructured Data. Journal on Digital Libraries, 1997.

4. S. Abiteboul and M. Scholl. From Simple to Sophistic Languages for Complex
Objects. Data Engineering Bulletin, 11(3):15–22, 1988.

5. P. Biron and A. Malhotra. XML Schema Part 2: Datatypes. W3C, 2001.
Recommendation – available at http://www.w3.org/TR/2001/REC-xmlschema-
2-20010502.



www.manaraa.com

Efficient XML Data Management: An Analysis 97

6. T. Bohme and E. Rahm. XMach-1: A Benchmark for XML Data Management,
2000. Available at
http://dbs.uni-leipzig.de/projekte/XML/XmlBenchmarking.html.

7. A. Bonifati and S. Ceri. Comparative analysis of five xml query languages. SIG-
MOD Record, 29(1):68–79, 2000.

8. R. Bourett. Xml database products, May 2001. available at
http://www.rpbourret.com/xml/XMLDatabaseProds.htm/.

9. S. Bressan, G. Dobbie, Z. Lacroix, M. L. Lee, Y. G. Li, U. Nambiar, and B. Wad-
hwa. XOO7: Applying OO7 Benchmark to XML Query Processing Tools. Proceed-
ings of CIKM. Atlanta., November 2001.

10. P. Buneman. Semistructured Data. In Proc. ACM Symp. on Principles of Database
Systems, Tucson, 1997.

11. M.J. Carey, D.J. DeWitt, and J.F. Naughton. The OO7 benchmark. ACM SIG-
MOD Conference, pages 12–21, 1993.

12. D. Chamberlin, D. Florescu, J. Robie, J.Siméon, and M. Stefaescu. XQuery: A
Query Language for XML. W3C, 2000. Available at
http://www.w3.org/TR/xmlquery.

13. D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. In Proceedings of the Workshop WebDB (in conjunc-
tion with ACM SIGMOD), Dallas, TX, 2000.

14. J. Clark and S. DeRose. XML Path Language (XPath). W3C, 1999. Available at
http://www.w3.org/TR/xpath.

15. C. J. Date. An Introduction to Database Systems. Addison-Wesley, 1995.
16. S. DeRose, R. Daniel, and E. Maler. XML Pointer Language (XPointer). W3C,

1999. Available at http://www.w3.org/TR/WD-xptr.
17. S. DeRose, E. Maler, D. Orchard, and B. Trafford. XML Linking Language

(XLink). W3C, 2000. Available at http://www.w3.org/TR/xlink.
18. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: a query

language for XML. Available at http://www.w3.org/TR/NOTE-xml-ql/, 1998.
19. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-

Wesley, 1998.
20. D. Fallside. XML Schema Part 0: Primer. W3C, 2001. Recommendation – available

at http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.
21. P. Fankhauser, M. Marchiori, and J. Robie. XML Query Requirements. W3C,

2000. Available at http://www.w3.org/TR/xmlquery-req.
22. D. Florescu and D. Kossman. A Performance Evaluation of Alternative Mapping

Schemes for Storing XML Data in a Relational Database, May 1999. Report 3680
INRIA, France.

23. R. Goldman, J. McHugh, and J. Widom. From Semistructured Data to XML:
Migrating the Lore Data Model and Query Language. In ACM SIGMOD Workshop
on the Web and Databases (WebDB’99), 1999.

24. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In Proc. of Intl. Conf. on Very Large Data
Bases, Delphi, Greece, August 1997.

25. J. Gray. The Benchmark Handbook: For Database and Transaction Processing
Systems. Morgan Kaufmann, 2nd edition, 1993.

26. U. Nambiar, Z. Lacroix, S. Bressan, M. L. Lee, and Y. G. Li. Benchmarking XML
Management Systems: The XOO7 Way. Proceedings of IIWAS, Linz, Austria.,
September 2001.



www.manaraa.com

98 U. Nambiar et al.

27. J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). In Proc. of
the Query Languages workshop, Cambridge, MA, December 1998. Available at
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

28. A. Sahuguet. KWEELT : More than just “yet another framework to query XML!”.
Sigmod Demo, 2001.

29. A. R. Schmidt, F. Waas, M. L. Kerste, D. Florescu, I. Manolescu, M. J. Carey,
and R. Busse. The XML Benchmark Project. Technical Report INS-R0103, April
2001.

30. H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1:
Structures. W3C, 2001. Recommendation – available at
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.

31. Y. Wang and K. Tan. A Scalable XML Access Control System. 10th World Wide
Web Conference, May 2001.


	Introduction
	Representational Diversity and Processing Efficiency of XML
	Data-Centric versus Document-Centric View of XML
	XML Processing Efficiency
	XML Management Systems

	XML Database Benchmarks
	Empirical Study and Analysis of XML Databases
	Data Conversion: Time and Space Requirements
	 Response Time Analysis

	Conclusion and Future Work

